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‡ Steklov Mathematical Institute, Gubkina 8, Moscow 117966, Russia
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Abstract. We consider the quantum sinh–Gordon model in this paper. Form factors in this
model were calculated by Mussardo and colleagues. We sum up all contributions of form factors
and obtain a closed expression for a correlation function. This expression is a determinant of an
integral operator. Similar determinant representations have been proven to be useful not only in
the theory of correlation functions, but also in matrix models.

1. Introduction

The theory of massive, relativistic, integrable models is an important part of modern quantum
field theory [18–25]. Scattering matrices in these models factorize into a product of two-
body S-matrices [18]. Form factors can be calculated on the basis of a bootstrap approach
[18–25].

The purpose of this paper is to calculate correlation functions. As usual correlation
functions can be represented as an infinite series of form factor contributions. In this paper
we sum up all these contributions and obtain a closed expression for correlation functions
of local operators (4.8). The idea of this summation is the following. We introduce an
auxiliary Fock space and auxiliary Bose fields (we shall call them dual fields). These fields
help us to represent the form factor decomposition of a correlation function in a form
similar to the ‘free fermionic’ case. This approach was developed in [6, 26, 27]. Finally, a
correlation function is represented as a vacuum mean value (in the auxiliary Fock space)
of a determinant of an integral operator (5.1). This representation has proven to be useful
[6, 8, 12]; it helps in the asymptotical analysis of quantum correlation functions. Among
other things, this approach has helped in the calculation of the asymptotics of the time- and
temperature-dependent correlation functions in the nonlinear Schrödinger equation [9].

In this paper we consider the sinh–Gordon model. This is the model of one (real)
relativistic Bose fieldφ in two dimensions. The action is

S =
∫ ∞
−∞

d2x

[
1

2
(∂µφ(x))

2− m
2
0

g2
coshgφ(x)

]
. (1.1)

It is the simplest example of the affine Toda field theories [28] withZ2 symmetryφ→−φ.
The model has only one massive particle. The two-body scattering matrix [19, 29] is given
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by the expression

S(β, B) = tanh1
2(β − (iπB/2))

tanh1
2(β + (iπB/2))

B = 2g2

8π + g2
. (1.2)

We consider a realg, which corresponds to a positiveB. Later we shall use a variable

x = eβ (1.3)

instead of the rapidityβ.
We use the representation for form factors found in [1–3] (another representation can

be found in [23])

Fn(β1, . . . , βn) = 〈0|O(0)|β1, . . . , βn〉 = HnQn(s)

n∏
i>j

Fmin(βij )

xi + xj . (1.4)

Hereβij = βi − βj . A function Fmin(β) is holomorphic for realβ

Fmin(β) = N (B)4(β) (1.5)

where

4(β) = exp

[
8
∫ ∞

0

dx

x

sinh( 1
4xB) sinh( 1

2x(1− 1
2B)) sinh 1

2x

sinh2 x
sin2

(
xβ̂

2π

)]
(1.6)

N (B) = exp

[
− 4

∫ ∞
0

dx

x

sinh( 1
4xB) sinh( 1

2x(1− 1
2B)) sinh 1

2x

sinh2 x

]
(1.7)

and β̂ = iπ − β. The functionFmin(β) has a simple zero atβ = 0 and no poles at the strip
06 Imβ 6 π . At β →∞ it goes to one:Fmin(β)→ 1. The functionsQn(x1, . . . , xn) are
symmetric polynomials of variablesx1, . . . , xn given by [1]

Qn(s) = detn−1Mij (s) i, j = 1, . . . , n− 1 (1.8)

where

Mij (s) = σ2i−j [i − j + s]. (1.9)

Let us explain the notation. Here and later we suppress the dependency ofQn(s) on the
variablesxj . The indexn− 1 in the expression detn−1 denotes the dimension of the matrix
Mij (s). The functionsσk are elementary symmetric polynomials ofkth order in the variables
x1, . . . , xn:

σk ≡ σ (n)k (x1, . . . , xn) =
n∑

i1<i2<···<ik
xi1xi2 . . . xik (1.10)

andσk = 0 if k < 0 or k > n. Here we have also suppressed the dependency ofσk on xj .
The symbol [m] is a ‘q-number’ defined by

[m] = sin(mBπ/2)

sin(Bπ/2)
= qm − q−m

q − q−1
(1.11)

whereq = exp{iBπ/2}. The numbers in (1.8) and (1.9) is an arbitrary integer, depending
on the specific choice of the operatorO in (1.4).

Finally, the constantsHk in (1.4) are normalization constants

H2n+1 = H1µ
n H2n = H0µ

n µ = 4 sin(πB/2)

Fmin(iπ)
(1.12)
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whereH0 andH1 also depend on the specific operatorO. For instance, the form factor of
the local field is given by (1.4) withs = 0 and

H0 = 〈0|φ(0)|0〉 = 0 H1 = 〈0|φ(0)|β〉 = 1√
2
. (1.13)

A correlation function of an operatorO can be presented as an infinite series of form
factor contributions

〈0|O(0, 0)O(x, t)|0〉 =
∞∑
n=0

∫
dnβ

n!(2π)n
|Fn(β1, . . . , βn)|2

n∏
j=1

e−mr coshβj . (1.14)

In this paper we sum up this series explicitly. Section 2 is devoted to a transformation of
the determinants (1.8) and (1.9) to a form which is convenient for summation. In section 3
we introduce auxiliary quantum operators—dual fields—in order to factorize an expression
for a correlation function and to represent it in a form similar to the ‘free fermionic case’.
In section 4 we sum up the series (1.14) into a Fredholm determinant. In section 5 we
use the Fredholm determinant representation for derivation of an asymptotic behaviour for
correlation functions.

2. A transformation of the form factor

A determinant of a linear integral operatorI + V can be written as

det(I + V ) =
∞∑
n=0

∫
dx1 . . .dxn

n!
detn


V (x1, x1) · · · V (x1, xn)

V (x2, x1) · · · V (x2, xn)

· · ·
V (xn, x1) · · · V (xn, xn)

 . (2.1)

Thus, in order to obtain a determinant representation for correlation functions one needs to
represent the form factor expansion (1.14) in the form (2.1). Determinants of the integral
operators that we consider can also be called Fredholm determinants.

The form factors (1.4) are proportional to the polynomialsQn(s), which in turn are
equal to the determinants of the(n− 1)× (n− 1) matrices (1.8)

Qn(s) = detn−1Mij (s). (2.2)

The matrixMij (s) consists of(n − 1)2 different functions, depending on the same set of
argumentsx1, . . . , xn:

Mij (s) = σ2i−j [i − j + s] i, j = 1, . . . , n− 1. (2.3)

The main goal of this and the next section is to transform the matrix (2.3) to such a form,
so that entries of a new matrix will be parametrized by a single function, depending on
different sets of variables (such asV (xi, xj ) in (2.1))

Mij → D̂ij D̂ij = D̂(xi, xj ). (2.4)

HereD̂(x, y) is a function of two arguments. The elementD̂ij depends oni andj only by
means of its argumentsxi andxj .

First, it is useful to rewrite the representation (2.2) in terms of a determinant of a matrix
n × n. To do this, notice thatσ2n−j = 0, if j < n, soMnj = δnj [s]

∏n
m=1 xm. Thus, we

obtain

Qn(s) = [s]−1
n∏

m=1

x−1
m detnMij (s) i, j = 1, . . . , n. (2.5)
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The right-hand side of (2.5) is well defined for alls 6= 0 andn 6= 0. These two cases
should be considered separately. It is easy to see that fors = 0 andn 6= 0 one has to
understand (2.5) as a limits → 0, because the determinant is proportional to [s]. However,
for n = 0, the original representation (2.2) is not well defined, while it is natural to define
the determinant det0Mij = 1 in (2.5). So, we obtainQ0(s) = [s]−1 for s 6= 0. On the
other hand, the cases = 0 corresponds to the form factor of the local field. In this case we
haveH0 = 0, and the form factor is equal to zero,H0Q0(0) = F0 = 0. Thus, we define
Q0(s) = [s]−1 for s 6= 0. We do not defineQ0(0), but we simply putF0 = 0 for s = 0.
Our definition ofQ0 leads to the formula for the vacuum expectation valueF0 = H0/[s].
We have checked that this is consistent with [23].

In order to study correlation functions we need to find the square of the polynomials
Qn(s),

Q2
n(s) = [s]−2

n∏
m=1

x−2
m detnCjk (2.6)

where

Cjk = (MT ·M)jk =
n∑
i=1

[i − j + s][ i − k + s]σ2i−j σ2i−k. (2.7)

One can calculate the sum in (2.7) using an integral representation for elementary symmetric
polynomials

σk = 1

2π i

∮
dz

zn−k+1

n∏
m=1

(z+ xm). (2.8)

Here the integral is taken in the positive direction with respect to an arbitrary circle|z| = ρ
around the origin. Choosing the radius of the circleρ > 1 and using (A.5) from appendix
A, we find

Cjk = 1

(2π i)2

∮
d2z

∏n
m=1(z1+ xm)(z2+ xm)

(q − q−1)2
z
n−j+1
1 zn−k+1

2

×
{
q2n+2+2s−j−k

q2z2
1z

2
2 − 1

+ q
−2n−2−2s+j+k

q−2z2
1z

2
2 − 1

− qk−j

z2
1z

2
2 − 1

− qj−k

z2
1z

2
2 − 1

}
. (2.9)

In order to find a common denominator we make replacements of variables in the braces:
z1q

1/2 = w1, z2q
1/2 = w2 in the first term;z1q

−1/2 = w1, z2q
−1/2 = w2 in the second term;

z1q
1/2 = w1, z2q

−1/2 = w2 in the third term andz1q
−1/2 = w1, z2q

1/2 = w2 in the fourth
term. After simple algebra we arrive at

Cjk = 1

(2π i)2

∮
d2w

w
n−j+1
1 wn−k+1

2

w2
1w

2
2 − 1

G(j)(w1)G
(k)(w2) (2.10)

where

G(`)(w) = 1

q − q−1

(
qs+(n−`)/2

n∏
m=1

(wq−1/2+ xm)− q−s−(n−`)/2
n∏

m=1

(wq1/2+ xm)
)
. (2.11)

The matrixC still depends onn2 different functionsCjk. However, this matrix can be
transformed to a more convenient form. Let us introduce the matrixAjk (it is studied in
appendix B)

Ajk = 1

(n− j)!
dn−j

dxn−j

n∏
m6=k

(x + xm)|x=0 (2.12)
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with a determinant

detA =
n∏
a<b

(xa − xb). (2.13)

Instead of matrixC it will be convenient to introduce matrixD

D = ATCA. (2.14)

Determinants of matricesC andD are related by

detnC =
n∏
a>b

(xa − xb)−2 detnD. (2.15)

The calculation of the explicit expression for matrixD in (2.14) reduces to the
summation of the Taylor series (see (B.8)), so we have

Djk =
∮

d2w
w1w2

(2π i)2(w2
1w

2
2 − 1)

Y (w1, xj )Y (w2, xk) (2.16)

where

Y (w, x) = J (w)

q − q−1

(
qs

wq1/2+ x −
q−s

wq−1/2+ x
)

(2.17)

and

J (w) =
n∏

m=1

(wq1/2+ xm)(wq−1/2+ xm). (2.18)

Taking the integral, for instance, with respect tow2 (recall that|w1w2| > 1), we have after
the symmetrization of the integrand

Djk = 1

8π i

∮
dw

w
(Y (w, xj )+ Y (−w, xj ))(Y (w−1, xk)+ Y (−w−1, xk)). (2.19)

Thus, we obtain a new representation for the square of the polynomialQn(s):

Q2
n(s) =

detnD

[s]2
∏n
m=1 x

2
m

∏n
a>b(xa − xb)2

. (2.20)

This brings us closer to (2.1).

3. Dual fields

The entries of the matrixDjk are parametrized now by a single functionD (2.19). However,
an elementDjk, is still not a function of two arguments only, because of the product
J (w) = ∏n

m=1(wq
1/2 + xm)(wq−1/2 + xm). This product depends on allxm. In order

to get rid of these products we introduce an auxiliary Fock space and auxiliary quantum
operators—dual fields. Dual fields are linear combinations of canonical Bose fields, see [6,
p 210].

Let us define

81(x) = q1(x)+ p2(x) 82(x) = q2(x)+ p1(x) (3.1)

where the operatorspj (x) andqj (x) act in the canonical Bose Fock space in the following
way:

(0|qj (x) = 0 pj (x)|0) = 0. (3.2)
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Non-zero commutation relations are given by

[p1(x), q1(y)] = [p2(x), q2(y)] = ξ(x, y) = log((x + yq1/2)(x + yq−1/2)). (3.3)

Due to the symmetry of the functionξ(x, y) = ξ(y, x), all fields8j(x) commute with each
other

[8j(x),8k(y)] = 0 j, k = 1, 2. (3.4)

However, despite these simple commutation relations, the vacuum expectation value of the
dual fields may be non-trivial, for example

(0|81(x)82(y)|0) = (0|p2(x)q2(y)|0) = ξ(x, y). (3.5)

It is easy to show that an exponent of the dual field acts like a shift operator. Namely, if
f (81(y)) is a function of81(y) then

(0|
n∏

m=1

e82(xm)f (81(y))|0) = (0|
n∏

m=1

ep1(xm)f (q1(y))|0)

= (0|f
(
q1(y)+

n∑
m=1

ξ(xm, y)

)
|0) = f (logJ (y)). (3.6)

Using this property of dual fields one can remove the productsJ (w) from the matrixDjk.
Let us define

Ŷ (w, x) = e81(w)

q − q−1

(
qs

wq1/2+ x −
q−s

wq−1/2+ x
)

(3.7)

and

D̂jk = 1

8π i

∮
dw

w
(Ŷ (w, xj )+ Ŷ (−w, xj ))(Ŷ (w−1, xk)+ Ŷ (−w−1, xk)). (3.8)

Then, due to (3.6), we have

detnD = (0|
n∏

m=1

e82(xm) detnD̂|0) (3.9)

or

detnD = (0| detn(D̂(xj , xk) e
1
282(xj )+ 1

282(xk))|0). (3.10)

The entries of the matrix̂Djk depend onxj andxk only, and they do not depend on other
variablesxm. Thus, we have presented the square of the polynomialQn(s) in terms of a
vacuum expectation value of a determinant of a matrixn × n, similar to one of the terms
on the right-hand side of (2.1). The entries of matrixD are parametrized by the single
two-variable functionD̂(x, y). Let us emphasize again that, as an operator in the auxiliary
Fock space,D̂(x, y) belongs to an Abelian subalgebra.

Besides the polynomialQn(s) the form factor (1.4) is proportional to a double product∏n
a>b Fmin(βab)(xa + xb)−1. In order to transform (1.14) to (2.1) it is necessary to factorize

this product. To do this we introduce another dual field

8̃0(x) = q̃0(x)+ p̃0(x). (3.11)

As usual

(0|q̃0(x) = 0 p̃0(x)|0) = 0. (3.12)

Operatorsq̃0(x) and p̃0(y) commute with allpj and qj (j = 1, 2). The only non-zero
commutation relation is

[p̃0(x), q̃0(y)] = η(x, y) (3.13)
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where

η(x, y) = η(y, x) = 2 log

∣∣∣∣Fmin(log(x/y))

x2− y2

∣∣∣∣ . (3.14)

Here we have used the fact that|Fmin(z)| = |Fmin(−z)|. It is worth mentioning also that
the right-hand side of (3.14) has no singularity atx = y, becauseFmin(x) has the first-order
zero atx = 0 andF ′min(0) = (i sin(πB/2)Fmin(iπ))−1 (see [1]). Hence,

η(x, x) = −2 log

∣∣∣∣2x2 sin
πB

2
Fmin(iπ)

∣∣∣∣ . (3.15)

Newly introduced dual fields also commute,

[8̃0(x), 8̃0(y)] = 0= [8̃0(x),8j (y)]. (3.16)

However, due to the Campbell–Hausdorff formula, we have

(0|
n∏

m=1

e8̃0(xm)|0) =
n∏

a,b=1

e
1
2η(xa,xb) = λ−n

n∏
m=1

x−2
m

n∏
a>b

∣∣∣∣Fmin(log(xa/xb))

x2
a − x2

b

∣∣∣∣2 (3.17)

where

λ =
∣∣∣∣2 sin

πB

2
Fmin(iπ)

∣∣∣∣ . (3.18)

Combining the last formula and the representations (2.20) and (3.10) forQ2
n(s), we find

Q2
n(s)

n∏
a>b

∣∣∣∣Fmin(log(xa/xb))

xa + xb

∣∣∣∣2 = λn

[s]2
(0| detnV̂ (xj , xk)|0). (3.19)

Here

V̂ (xj , xk) = D̂jk e
1
280(xj )+ 1

280(xk) (3.20)

and

80(x) = 8̃0(x)+82(x). (3.21)

Therefore, we have managed to represent a square of an absolute value of the form factor as
a determinant, similar to one of the terms on the right-hand side of (2.1). In the next section
we shall sum up all contributions of the form factors and obtain a determinant representation
for a correlation function.

4. The determinant representation for a correlation function

In the previous sections we have obtained the representation for a square of an absolute
value of the form factor

Fn(β1, . . . , βn) = 〈0|O(0, 0)|β1, . . . , βn〉 (4.1)

in terms of a determinant

|Fn(β1, . . . , βn)|2 = 1

[s]2
|Hn|2λn(0| detnV̂ (xj , xk)|0). (4.2)

Here, the constantsHn are equal to

H2n+1 = H1µ
n H2n = H0µ

n µ = 4 sin(πB/2)

Fmin(iπ)
(4.3)
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and
1

[s]
H0 = F0 = 〈0|O(0, 0)|0〉 H1 = F1 = 〈0|O(0, 0)|β〉. (4.4)

We have the following representation for a correlation function of operatorsO in terms
of form factors:

〈0|O(0, 0)O(x, t)|0〉 =
∞∑
n=0

∫
dnβ

n!(2π)n
|Fn(β1, . . . , βn)|2

n∏
j=1

e−θ(xj ) (4.5)

where

θ(x) = mr

2
(x + x−1). (4.6)

Substituting with (4.2) and (4.3) here, we arrive at the following representation:

〈0|O(0, 0)O(x, t)|0〉 = (0| 1

[s]2

{
|H0|2+ |H1|2|µ|−1

2

∞∑
n=0

∫ ∞
0

dnx

n!

( |λµ|
2π

)n
× detn

[
V̂ (xj , xk)√

xjxk
e−

1
2 (θ(xj )+θ(xk))

]
+ |H0|2− |H1|2|µ|−1

2

×
∞∑
n=0

∫ ∞
0

dnx

n!

(
−|λµ|

2π

)n
detn

[
V̂ (xj , xk)√

xjxk
e−

1
2 (θ(xj )+θ(xk))

]}
|0). (4.7)

Both of these series have the form (2.1), so they can be summed up and written as
determinants of integral operators (Fredholm determinants)

〈0|O(0, 0)O(x, t)|0〉 = (0| 1

[s]2

{ |H0|2+ |H1|2|µ|−1

2
det(I + γ Û)

+|H0|2− |H1|2|µ|−1

2
det(I − γ Û)

}
|0) (4.8)

where

Û (x, y) = V̂ (x, y)√
xy

e−
1
2 (θ(x)+θ(y)) (4.9)

and

γ = 4

π
sin2 πB

2
. (4.10)

The determinant representation (4.8) is the main result of this paper, therefore we
summarize here the basic definitions.

The integral operatorsI ± γ Û act on a trial functionf (x) as

[(I ± γ Û)f ](x) = f (x)± γ
∫ ∞

0
Û (x, y)f (y)dy. (4.11)

The kernelÛ (x, y) is equal to

Û (x, y) = D̂(x, y)√
xy

e−
1
2 (θ(x)+θ(y))e

1
2 (80(x)+80(y)) (4.12)

where

D̂(x, y) = 1

8π i

∮
dw

w
(Ŷ (w, x)+ Ŷ (−w, x))(Ŷ (w−1, y)+ Ŷ (−w−1, y)) (4.13)
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and

Ŷ (w, x) = e81(w)

q − q−1

(
qs

wq1/2+ x −
q−s

wq−1/2+ x
)
. (4.14)

The dual fields80(x) and81(x) were defined in section 3 (see (3.1) and (3.11)). The
main property of these dual fields is that they commute with each other, so the Fredholm
determinants det(I±γ Û) are well defined. Certainly det(I±γ Û) are operators in auxiliary
Fock space, but they belong to the Abelian subalgebra. On the other hand, the vacuum
expectation value of these operators is non-trivial. It follows from commutation relations
(3.3) and (3.13) that, in order to calculate the vacuum expectation value, one should use the
following prescription:

(0|
M1∏
a=1

e80(xa)
M2∏
b=1

e81(xb)|0) =
M1∏
a=1

M1∏
b=1

e
1
2η(xa,xb)

M1∏
a=1

M2∏
b=1

eξ(xa,xb). (4.15)

Here

η(x, y) = 2 log

∣∣∣∣Fmin(log(x/y))

x2− y2

∣∣∣∣ (4.16)

and

ξ(x, y) = log((x + yq1/2)(x + yq−1/2)). (4.17)

Recall also that the determinant representation (4.8) is valid for an arbitrarys. If s = 0,
one should understand the right-hand side as a limits → 0, taking into account the fact
thatH0 = 0.

Similar Fredholm determinant representations have been useful not only in the theory
of correlation functions [4–13], but also in matrix models [14–17]. Work on a determinant
representation for correlation functions led to the discovery of a determinant formula for a
partition function of the six-vertex model with domain wall boundary conditions [30]. In
[31] it was shown that this partition function satisfies the Hirota equation. In [32] it was
shown that the determinant formula for the partition function of the six-vertex model can
help to solve a long-standing mathematical problem—to prove the alternating sign matrix
conjecture.

5. Large r asymptotic

In this section we shall demonstrate how one can find a long-distance asymptotic of a
correlation function starting from the Fredholm determinant. We shall reproduce some
known results.

The kernel of the integral operator̂U(x, y) can be written in the form

Û (x, y) =
∮

dwP1(w, x)P2(w, y) (5.1)

where projectorsP are

P1(w, x) = 1

8π iw
√
x
(Ŷ (w, x)+ Ŷ (−w, x))e

1
280(x)− 1

2θ(x) (5.2)

P2(w, y) = 1√
y
(Ŷ (w−1, y)+ Ŷ (−w−1, y))e

1
280(y)− 1

2θ(y). (5.3)

Let us recall here thatw integration goes along a large contour around zero in the positive
direction. A radius of the contour should be greater than 1. The Fredholm determinants of
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the kernels of type (5.1) can be written as determinants of operators acting in the space of
variables ‘w’

det(I ± γ Û(x, y)) = det(I ± γ Ũ(w1, w2)) (5.4)

where

Ũ (w1, w2) =
∫ ∞

0
dx P1(w1, x)P2(w2, x). (5.5)

The integral operator̃U(w1, w2) acts on a trial functionf (w) as

[(I + Ũ )f ](w1) = f (w1)+
∮
Ũ (w1, w2)f (w2) dw2. (5.6)

Consider the caser →∞. Then the value of the integral in (5.5) can be estimated by
means of a steepest descent method. The saddle point of the functionθ(x) is x = x0 = 1.
Examination of the commutation relations of dual fields (4.15) shows that dual fields can
be considered as analytic functions in the vicinity of the real axis. Hence, we can estimate
the integral in (5.5) as

Ũ (w1, w2) = P1(w1, 1)P2(w2, 1)

(√
2π

mr
+O(r−3/2)

)
. (5.7)

Thus, for the larger asymptotic the kernel̃U(w1, w2) becomes a one-dimensional projector,
and its Fredholm determinant is equal to

det(I ± γ Ũ)→ 1± γ
∮

dw Ũ(w,w). (5.8)

In order to calculate a vacuum expectation value ofŨ (w,w) one can use prescription
(4.15); however, it is better to write down the dual field80(x) in terms of the original fields
80(x) = 8̃0(x)+82(x). Then the contribution of the fields̃80(1) gives

(0|e8̃0(1)|0) = e
1
2η(1,1) = λ−1. (5.9)

To find a contribution of the fields81(w) and82(x) we can use (3.6) and (2.18)

(0|Ũ (w,w)|0) = e−mr

8π iλw

√
2π

mr
(Y1(w, 1)+ Y1(−w, 1))(Y1(w

−1, 1)+ Y1(−w−1, 1)) (5.10)

where

Y1(w, 1) = (wq1/2+ 1)(wq−1/2+ 1)

q − q−1

(
qs

wq1/2+ 1
− q−s

wq−1/2+ 1

)
= [s] + [s − 1/2]w.

(5.11)

After substituting this into (5.8) it becomes clear that only a pole atw = 0 contributes into
the integral, so we arrive at

(0|
∮

dw Ũ(w,w)|0) = [s]2λ−1

√
2π

mr
e−mr (5.12)

and hence

(0| det(I ± γ Ũ)|0)→ 1± [s]2γ

λ

√
2π

mr
e−mr . (5.13)

Finally, substituting this into (4.8) and using explicit expressions forλ (3.18),µ (4.3) and
γ (4.10), we obtain the correct asymptotical expression

〈0|O(0, 0)O(x, t)|0〉 → |H0|2
[s2]
+ |H1|2(2πmr)−1/2 e−mr . (5.14)
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Recall that for the correlation function of local fields one should putH0 = 0 = H0/[s];
therefore, we see that the asymptotic formula (5.14) is well defined for arbitrarys. If H1 = 0
(for the stress-energy tensor), then (5.14) gives a constant for an asymptotic. However, in
this case one has to estimate the kernelŨ (w1, w2) more accurately. Namely, one should
take into account the explicit expression for corrections of orderr−3/2 in (5.7). In this
case the kernel̃U turns into a two-dimensional projector and it is easy to show that the
exponentially decreasing term behaves like exp(−2mr).

6. Summary

We were able to sum up contributions of all the form factors and obtain the closed
expression for correlation functions (4.8). In a following paper we shall use the determinant
representation for correlation functions in order to calculate the asymptotics of the time-
and temperature-dependent correlation functions. It is clear from [6] how to deform the
determinant representation in order to include the temperature dependence. It is also clear
how to use this determinant representation in order to evaluate the asymptotics of the
time- and temperature-dependent correlation functions of the model [9]. This will provide
important information about the physics of the model.

We believe that the determinant representation for correlation functions is a common
feature of integrable models.
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Appendix A. Elementary symmetric polynomials

Consider an integral representation (2.8) for the elementary symmetric polynomials

σ
(n)
k (x1, . . . , xn) ≡ σk = 1

2π i

∮
|z|=ρ

dz

zn−k+1

n∏
m=1

(z+ xm) (A.1)

whereρ is arbitrary positive. Notice that the representation (A.1) holds for an arbitrary
integerk including k < 0 andk > n.

Here we derive an auxiliary formula, which is used in section 2. Namely, let us consider
the sum

Tjk(α) =
n∑
i=1

α2iσ2i−j σ2i−k j, k = 1, . . . , n (A.2)

whereα is an arbitrary complex number. One can extend the summation in (A.2) from
−∞ to n. Then we have

Tjk(α) =
n∑

i=−∞
α2iσ2i−j σ2i−k =

∞∑
l=0

α2(n−l)σ2n−2l−j σ2n−2l−k. (A.3)

Using the integral representation (A.1) we find

Tjk(α) = 1

(2π i)2

∞∑
l=0

∮
d2zα2n−2l

z
2l+j−n+1
1 z2l+k−n+1

2

n∏
m=1

(z1+ xm)(z2+ xm). (A.4)
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We can choose the integration contour in such a way that|αz1z2| > 1 at the contour. Then
one can sum up the series with respect tol:

Tjk(α) = α2n+2

(2π i)2

∮
d2z

z
n−j+1
1 zn−k+1

2

α2z2
1z

2
2 − 1

n∏
m=1

(z1+ xm)(z2+ xm). (A.5)

The integrand contains only two simple polesαz1z2 = ±1; therefore, one can take the
integral with respect toz1 or z2 and obtain a single integral expression forTjk.

Appendix B. Properties of the Vandermonde matrix

Consider a Vandermonde matrixWjk,

Wjk = zk−1
j j, k = 1, . . . , n (B.1)

with

detn(Wjk) =
n∏
a>b

(za − zb). (B.2)

The inverse matrixW−1 can be written in the form

(W−1)jk = 1

(j − 1)!

dj−1

dxj−1

n∏
m6=k

(
x − zm
zk − zm

)∣∣∣∣∣
x=0

. (B.3)

Indeed,
n∑
l=1

Wjl(W
−1)lk =

n−1∑
l=0

zlj

l!

dl

dxl

n∏
m6=k

(
x − zm
zk − zm

)∣∣∣∣∣
x=0

=
n∏

m6=k

(
zj − zm
zk − zm

)
= δjk. (B.4)

Here we have used the fact that the right-hand side of (B.4) is a Taylor series for the
polynomial of the(n− 1) degree

∏n
m6=k(x − zm)(zk − zm)−1.

In section 2 we used the matrixAjk:

Ajk = 1

(n− j)!
dn−j

dxn−j

n∏
m6=k

(x + xm)|x=0. (B.5)

The determinant of this matrix is equal to

detnA =
n∏
a 6=b
(xa − xb) det

[
Ajk

∏
m6=k

(xm − xk)−1

]
. (B.6)

It is easy to see that the matrix on the right-hand side of (B.6) coincides with the inverse
Vandermonde matrixW−1 up to the replacementxm = −zm and a permutation of rows.
Thus, we obtain

detnA =
n∏
a<b

(xa − xb). (B.7)

The calculation of products of matrixA and matrices containing powers of some
complex numbersw is simple. For example, deriving (2.16) we used
n∑
l=1

1

(n− l)!
dn−l

dxn−l

n∏
m6=j

(x + xm)|x=0 · wn−l1 G(l)(w1)

= qs

q − q−1

n∏
m=1

(w1q
−1/2+ xm)

n∑
l=1

(w1q
1/2)n−l

(n− l)!
dn−l

dxn−l

n∏
m6=j

(x + xm)|x=0
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− q−s

q − q−1

n∏
m=1

(w1q
1/2+ xm)

n∑
l=1

(w1q
−1/2)n−l

(n− l)!
dn−l

dxn−l

n∏
m6=j

(x + xm)|x=0

=
∏n
m=1(w1q

1/2+ xm)(w1q
−1/2+ xm)

q − q−1

[
qs

w1q1/2+ xj −
q−s

w1q−1/2+ xj

]
.

(B.8)
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